Review
 Organometallic and carbonyl compounds of cadmium: analysis of crystallographic and structural data

Clive E. Holloway ${ }^{\text {a.* }}$, Milan Melník ${ }^{\text {b }}$
${ }^{2}$ Deparment of Chemistry, York Universiṭ. 4700 Keele St. North York, Ontario M3J 1P3, Canada
${ }^{\text {b }}$ Deparmene of Inorganic: Chemisry, Slovak Technical University, Rudlinskeho 9. Branisuva SL S12.37. Stoouk Republic

Received 12 January 1996

Abstract

This review draws together the structural information presently available for almost 40 organocadmium and carbonyl derivatives. The cadmium oxidation state varies from 0 to +2 . There is only one example of $\mathrm{Cd}(\mathrm{I})$, which is in a distorted tetrahedral environment. The oxidation state of +2 is most abundant, with $\mathrm{Cd}(11)$ found in digonal, trigonal planar, tetrahedral and five-coordinate (mostly trigonal-pyramidal) environments. The nuclearity ranges from one to seven, and one example each of nine and 13 metal atoms. Correlations are drawn between bond lengths and bond angles, and comparisons made with the corresponding zinc and mercury analogues.

Keywords: Cadmium: Cartonyl; Group 12; Crystal structure; Organometallic; Review

1. Introduction

The chemistry of cadmium compounds has been an active area of research for a considerable time. Crystallographic structural determinations have been carried out for over $\mathbf{6}(0)$ coordination complexes of cadmium [1], and over 90 complexes of cadmium with one or more different metal atoms [2]. There has also been much interest in the organometallic derivatives of cadmium, and this review classifies and analyses the structural data for almost 40 such derivatives, published up to the end of July 1994. The data is presented in the order of increasing degree polymerisation, increasing coordination number around the cadmium atom, increasing complexity of the coordination sphere, and increasing atomic number of the principal coordinating ligand.

2. Monomeric cadmium derivatives

The crystallographic and structural data for monomeric organocadmium compounds are given in Table I. They are mostly all either yellow or colourless.

[^0]There are four examples in which cadmium(II) is two coordinate, and both bonds are to a carbon atom from an organic ligand. The $\mathrm{Cd}=\mathrm{C}$ bond distances range from 211.0×3) to $217.2(3) \mathrm{pm}$ (mean value of 214.7 pm) for the first three compounds. These are linear ($\mathrm{C}-\mathrm{Cd}-\mathrm{C}=$
 The fourth derivative $[6]$ has longer $\mathrm{Cd}-\mathrm{C}$ distances at 231.0K21) and $237.3(13) \mathrm{pm}$, with a very unasual bent angle of $76.1(6)^{\circ}$ for the digonal $\mathrm{C}-\mathrm{Cd}-\mathrm{C}$ arrangement. However, there are also another two carbon atoms of the respective ligands located at distances of 291.1 and 296.0 pm , which together with the $2,2,4,4$-tetraphenyl$1 \mathrm{H}-2 \lambda^{5}$-, $4 \lambda^{3}$-benzodiphosphepinid ($\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{P}_{2}$) ligands are responsible for this discrepancy.

In another eight derivatives [7-13] each cadmium(il) atom is in a tetrahedral arrangement with differing degrees of distortion. In the first, a pseudo-tetrahedral coordination about the $\mathrm{Cd}(\mathrm{II})$ atom is created by three nitrogen atoms of $\mathrm{HB}\left(3-{ }^{-} \mathrm{Bu}-5-\mathrm{Mepz}\right)_{3}$ and by the carbon atom of a methyl (Me) group, giving a $\mathrm{CdN}_{3} \mathrm{C}$ chromophore. In the remaining seven derivatives. a $\mathrm{CdN}_{2} \mathrm{C}_{2}$ chromophore is built up from two unidentate pyridine molecules and two unidentate cyclopentadienyl (cp) ligands [8]. or by two chelating ligands which utilize both N and C donor sites $[9,12]$, or by one N -chelating ligand plus two unidentate C donor ligands [$10,11,13$]. The mean $\mathrm{Cd}-\mathrm{L}$ bond distance increases in
the order: 216.4 pm (unidentate-C) $<231.1 \mathrm{pm}$ (tri-dentate- N) $<233.5 \mathrm{pm}$ (unidentate- N) $<256.4 \mathrm{pm}$ (bi-dentate-N). For the hetero donor ligands (C plus N) the mean Cd-L distances are $221.2 \mathrm{pm}(\mathrm{C})$ and 254.4 pm (N).

There are two different bidentate N -donor ligands, $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine ($\mathrm{Me}_{4} \mathrm{en}$) and $2,2^{\prime}$-bipyridyl ($2,2^{\prime}$-bpy), which have different bite angle dimensions. The effect of both steric and electronic factors can be observed in the variation of the $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ bond angles. For the five-membered metallocyles, the mean $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ bond angle is 71.4° for $\mathrm{Me}_{4} \mathrm{en}$ and 64.5° for 2.2^{\prime}-bpy. The former is a typical saturated
σ-donor, while the latter is unsaturated and also a π-donor. There is an interdependence between the $\mathrm{N}-$ $\mathbf{C d}-\mathrm{N}$ bond angles and the $\mathrm{Cd}-\mathrm{N}$ bond distances. When the bond elongates the intrametallocyclic ring opens, and vice versa. The $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ values for the two ligands are: 260.6 pm and $71.4^{\circ}\left(\mathrm{Me}_{4} \mathrm{en}\right)$, vs. 252.2 pm and 64.5° ($2,2^{\prime}$-bpy).

3. Bi- and oligomeric cadmium derivatives

The crystallographic and structural date for the oligomeric organocadmium derivatives are given in

Table 1
Crystallographic and structural data for monomeric organocadmium compounds ${ }^{\text {a }}$

Compound ${ }^{\text {b }}$ (colour)	Crystal class ${ }^{\text {c }}$ Space group Z	$\begin{aligned} & a(\mathrm{pm}) \\ & b(\mathrm{pm}) \\ & c(\mathrm{pm}) \end{aligned}$	β (deg)	Chromophore	$\begin{aligned} & \mathrm{Cd}-\mathrm{L} \\ & (\mathrm{pm}) \end{aligned}$		L-Cd	(deg)	Reference
$\begin{aligned} & \overline{\text { Cdusi) }} \\ & \text { (colourless) } \end{aligned}$	$\begin{aligned} & p \\ & p 2_{1} / n \end{aligned}$	$\begin{array}{r} 915.1(1) \\ 1773.0(4) \\ 1054.8(2) \end{array}$	103.57(1)	CdC_{2}	$\mathrm{C}^{\text {d }}$	217.2(3,0)	$\mathrm{C}, \mathrm{C}^{\text {d }}$	180	[3]
$\begin{aligned} & \mathrm{Cd}\left(\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2} .\right. \\ & \left.\left(\mathrm{SiMe}_{2} \mathrm{OM}_{2}\right)\right)_{2} \\ & (\text { (white) } \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & c \\ & 4 \end{aligned}$	$\begin{gathered} 1689.6(13) \\ 935.2(5) \\ 2387.9(8) \end{gathered}$	114.22(4)	CdC_{2}	c	215.96,0)	C.C	180	[4]
$\begin{aligned} & \left.\mathrm{CdS}_{6} \mathrm{~F}_{3}\right)_{2} \\ & \text { (colourless) } \end{aligned}$	$\begin{aligned} & \mathrm{m}_{2} / n \\ & q \end{aligned}$	$\begin{gathered} 1203.0(1) \\ 779.2(1) \\ 1371.1(1) \end{gathered}$	108.94(1)	CdC_{2}	C	211.0(3.1)	C.C	173.9(1)	[5]
$\underset{\text { (colourless) }}{\mathrm{Cd}_{8}\left(\mathrm{C}_{1} \mathrm{H}_{3} \mathrm{P}_{2}\right)_{2}}$	$\begin{aligned} & \mathrm{m}_{1} \\ & \mathrm{P}_{2} / c \end{aligned}$	$\begin{aligned} & 1480.4(13) \\ & 1369.3(7) \\ & 2464(3) \end{aligned}$	140.12(4)	CdC_{2}	C	$\begin{aligned} & 231.0221) \\ & 232.3(13) \end{aligned}$	C.C	76.1(6)	[6]
$\mathrm{Cd}\left(\mathrm{HB}\left(3=-\mathrm{Bu}=\mathrm{S}^{-} \cdot \mathrm{Mepz}\right)_{3} \mathrm{Me}\right.$ (colourless)	$\begin{aligned} & c \\ & 14.31 \\ & 16 \end{aligned}$	2274.7(2)		$\mathrm{CuN}_{3} \mathrm{C}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C}_{\mathrm{Me}} \end{aligned}$	$\begin{aligned} & 231.1(7,0) \\ & 307.4(19) \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{~N} \\ & \mathrm{~N}, \mathrm{C} \end{aligned}$	$\begin{array}{r} 85.2(4.0) \\ 128.62 .0) \end{array}$	[7]
$\begin{aligned} & \operatorname{Cdpy}_{1}\left(\eta^{\prime} \in \mathrm{cp}\right)_{z} \\ & \text { (yellow) } \end{aligned}$	$m_{z_{1} / n}$	1270(1) $10(0) .3(4)$ $14^{+8}(1)$	107.20(4)	$\mathrm{CuN}_{2} \mathrm{C}$	N_{11}	$233,5(3,26)$ $2330(5,23)$	$\begin{aligned} & \mathrm{N} . \mathrm{N} \\ & \mathrm{CR} \\ & \mathrm{~N} . \mathrm{C} \end{aligned}$	$\begin{aligned} & 96.4(11 \\ & 139.1(2) \\ & 1060(2,3.3) \end{aligned}$	[8]
$\underset{\text { (colourlens) }}{\mathrm{Cu}\left(\mathrm{Z}=\left(\mathrm{Me}, \mathrm{Si}_{3} \mathrm{CC}_{4} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right.}$	$\begin{aligned} & \mathrm{m}_{\mathrm{m}}^{1} / \mathrm{c} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 24+5(2) \\ & 1656(2) \\ & 1660(1) \end{aligned}$	107.82(6)	$\mathrm{CuN}_{2} \mathrm{C}$		$\begin{aligned} & 249 \\ & 227 \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{~N} \\ & \mathrm{C}, \mathrm{C} \\ & \mathrm{~N}, \mathrm{C} \end{aligned}$	$\begin{aligned} & 124.4 \\ & 174.3 \\ & 105.6 \end{aligned}$	[1]
$\mathrm{Cd}^{\left(\mathrm{Me}_{4} \mathrm{enKM}\right.} \mathrm{KM}_{3}$ (colourless)	or Conea 8	$\begin{aligned} & 1119.6(2) \\ & 1217.9(2) \\ & 17969(3) \end{aligned}$		$\mathrm{CuN}_{2} \mathrm{C}_{2}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C}_{\mathrm{Mt}} \end{aligned}$	$\begin{aligned} & 257.1(14.5) \\ & 219.4(12.0) \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{~N} \\ & \mathrm{CC} \\ & \mathrm{~N}, \mathrm{C} \end{aligned}$	$\begin{aligned} & 71.5(5) \circ \\ & 154.0(3) \\ & 100.5(4.2) \end{aligned}$	[10]
$\left.\mathrm{CdMc}_{4} \mathrm{En}\right)\left(\mathrm{Me}_{3} \mathrm{CH}_{2}\right)_{2}$ (coloufless)	$\begin{aligned} & \mathrm{m} \\ & \mathrm{c} 2 / c \end{aligned}$	$\begin{array}{r} 1760.4(5) \\ 948.4(3) \\ 1275.8(3) \end{array}$	106.07(2)	$\mathrm{CdN}_{2} \mathrm{C}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 204,2(5,0) \\ & 216.04,0) \end{aligned}$	$\begin{aligned} & \mathrm{N} N \\ & \mathrm{CN} \\ & \mathrm{~N} \mathrm{C} \end{aligned}$	$\begin{aligned} & 71.2(2) \\ & 157.0(6) \\ & 102.02) \end{aligned}$	[10]
[Cu(bpy) $\left.\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2}$]. $\stackrel{3}{3}$ bpy (yellow)	$\begin{aligned} & m \\ & 122_{1} / \mathrm{c} \\ & 4 \end{aligned}$	$\begin{aligned} & 887.4(4) \\ & 947.0(5) \\ & 3245(1) \end{aligned}$	92.01(4)	$\mathrm{CdN}_{3} \mathrm{C}_{2}$	N C	$\begin{aligned} & 252.5(35.5) \\ & 214(6.5) \end{aligned}$	N.N C.C N.C	$\begin{aligned} & 65(1)^{\circ} \\ & 156(2) \\ & 100 \times 2.9) \end{aligned}$	[11]
Cddamab): (yellow)	$\begin{aligned} & \text { or } \\ & P_{\text {Pat }}{ }^{2} \end{aligned}$ 4	$\begin{aligned} & 1248.0(5) \\ & 1248.0(5) \\ & 1300.3(5) \end{aligned}$		$\mathrm{CdN}_{3} \mathrm{C}_{2}$	N C	$\begin{aligned} & 259.8(9) \\ & 215.4(8,0) \end{aligned}$	N.N C.C N.C	$\begin{aligned} & 116.12(14) \\ & 174.3(1) \\ & 114.6(1.7 .4) \end{aligned}$	[12]
$\begin{aligned} & \text { CdupyyMe), } \\ & \text { (yellow) } \end{aligned}$	or Pboa 8	$\begin{aligned} & 15910111 \\ & 1178.4(12) \\ & 1354.0(10) \end{aligned}$		$\mathrm{CdN}_{2} \mathrm{C}_{2}$	$\begin{gathered} \mathrm{N} \\ \mathrm{C} \end{gathered}$	$\begin{aligned} & 251.0(14,16) \\ & 216.2(35.10) \end{aligned}$	$\begin{aligned} & \text { N.N } \\ & \text { N. } \\ & \text { C. } \\ & \text { N.C } \end{aligned}$	$\begin{aligned} & 64.0(5)^{c} \\ & 148.4(8) \\ & 103.4(8.6 .5) \end{aligned}$	[1.3]

[^1]Table 2
Crystallographic and strictural data for dimeric to polymeric organocadmium compasurds ${ }^{2}$

Compound ${ }^{\text {b }}$ (colour)	Crystal class ${ }^{\text {e }}$ space group Z	$\begin{aligned} & a(\mathrm{pm}) \\ & b(\mathrm{pm}) \\ & c(\mathrm{pm}) \end{aligned}$	$\alpha($ deg $)$ β (deg) $\gamma($ deg $)$	Chromophore	$\begin{aligned} & \begin{array}{l} \mathrm{Cd}-\mathrm{L} \\ (\mathrm{pm}) \end{array} \end{aligned}$		$\mathrm{Cd}-\mathrm{Cd}(\mathrm{pm})$ $\mathrm{Cd}-\mathrm{L}-\mathrm{Cd}(\mathrm{deg})$ $\mu \mathrm{L}-\mathrm{Cd}-\mu \mathrm{L}$ (deg)	L-Cd	deg)	Reference
$\begin{aligned} & {\left[\mathrm { Cd } \left(\left(\mathrm{Me} e_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{~N}_{2^{-}}\right.\right.} \\ & \left(\eta^{1}-\mathrm{-pp} \mathrm{p}^{-}\right)_{2} \\ & \text { yellow) } \\ & {\left[\mathrm{Cd}(\text { tpsi) } \mathrm{Cl}]_{2}\right.} \\ & \text { (colourless) } \end{aligned}$	m	1602.7(2)	93.25988	$\mathrm{CaN}_{2} \mathrm{C}$	$\mu \mathrm{N}^{\text {d }}$	225.6(5,2)		$\mathrm{N}, \mathrm{C}^{\text {d }}$	$\begin{aligned} & 125.7(2,3) \\ & 143.8(2,1) \end{aligned}$	[14]
	$P 2_{1} /{ }_{\text {a }}$	1562.2(1)				233.1(5,8)				
	4	1622.8(1)		$\mathrm{CdCl}_{2} \mathrm{C}$	$\mathrm{C}_{\text {¢ }}$.	222.2(6,2)	$\begin{aligned} & 89.5(2,2) \\ & 90.5(2,3) \end{aligned}$	Cl, C	136.7(1,\%.6)	[15]
	m	$1504.8(6)$	108.2916		${ }_{C}^{\mu \mathrm{Cl}}$	253.2(2,33)	not given 94.1(1.3)			
	$P 2_{1} / \mathrm{n}$	1824.8(9)			C	219.6(6,4)				
	4	$2080.7(21)$		$\mathrm{CdBr}_{2} \mathrm{C}$			$\begin{aligned} & \text { 94.I(} 1,3 \text {) } \\ & \text { 86.0(} 1,0) \end{aligned}$	Br, C	128.6-144.0(2)	[16]
$\left[\mathrm{Cd}\left\{\mathrm{C}\left(\mathrm{SiMm}_{2} \mathrm{Ph}_{3}\right\} \mathrm{Br}\right]_{2}\right.$	$\begin{aligned} & \mathrm{m} \\ & P 2_{i} / n \end{aligned}$	$\begin{aligned} & 1499.6(4) \\ & 1827.4(2) \end{aligned}$	109.15(2)		$\begin{aligned} & \mu \mathrm{Br} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 263.6(1,31) \\ & 219(1) \end{aligned}$	not given 92.71(4) 37.15(4)			
	4	2099.3(2)								
$\left[\mathrm{Cd}\left(\mathrm{COHiMe}_{2} \mathrm{Ph}\right)_{3}\right\}$	t	1107.46)	82.86(2)	$\mathrm{CdBr}_{2} \mathrm{OC}$	$\mu \mathrm{Br}$	266.3(2,12)	not given	$\mathrm{Br}, \mathrm{O}$$\mathrm{Br}, \mathrm{C}$	92.1(6)	[16]
$\left.\mathrm{Br}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot$ thf	$P \overline{\mathbf{1}}$	1187.6(7)	84.642)			$\begin{aligned} & 238(2) \\ & 222(2) \end{aligned}$	$\begin{aligned} & 88.5(1) \\ & 91.5(1) \end{aligned}$		127.3(7)	
	1	1224.6(5)	71.07(2)					O,C	$116.7(7)$	[17]
	tr	1278.86)	63.300(2)	$\mathrm{CdO}_{3} \mathrm{C}$	C	$212.7(9,7)$				
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{1} \cdot(\mathrm{tc})_{2}$	${ }^{\text {P1 }}$	1382.1(6)	83.30(5)		$\mu_{3} \mathrm{HO}$	224.3(4.43)	$\begin{aligned} & 99.6(2,1.5) \\ & 79.5(2,1.4) \end{aligned}$			
(colourless) $\mathrm{Cd}(\mathrm{Me})$ (dox)	2	1388.9 5)	87.19(5)					C,C	173.048)	[18]
	or Phcm	$\begin{gathered} 428.4(4) \\ 1477.0(12) \end{gathered}$		$\begin{aligned} & \mathrm{CdC}_{2} \\ & \left(\mathrm{O}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Me}} \\ & \mathbf{O}^{2} \end{aligned}$	$\begin{aligned} & 209(2) \\ & 281.5(18,30) \end{aligned}$				
	4	1317.0(11)								

Where more than one chemically equivalent distance or angle is present. the mean value is tabulated. The first number in parentheses is the e.s.d., and the second is the maximum deviation from the mean.
${ }^{\mathrm{b}} \mathrm{t}_{\mathrm{y}} \mathrm{si}=$ ($\left.\mathrm{Mh}_{2} \mathrm{MeSi}\right)_{3} \mathrm{C}$; thf = tetrahydrofuran; tol = tolueme.
\pm The chemical identity of the coordinated atom or ligand is specifted in these colnmms.

Fig. I. Structure of $\left[\mathrm{Cd}\left(\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{\left(\eta^{1} \cdot \mathrm{cp}\right.}{ }^{*}\right)\right]_{2}[14]$.

Table 2. Four of the structures are of dimers [14-16]. The structure of the yellow compound [Cd$\left.\left(\mathrm{Me}, \mathrm{Si}_{2}\right)_{2} \mathrm{~N}_{2}\left(\eta^{\prime} \mathrm{ep}{ }^{*}\right)\right]_{2}[14]$ (cp* a pentamethylcyclopentadienyl), shown in Fig. 1, contains the near-planar asymmetric $\mathrm{Cd}_{2} \mathrm{~N}_{2}$ ring in which the $\mathrm{Cd}(1)-\mathrm{N}(1)$ and $\mathrm{Cd}(2)=\mathrm{N}(2)$ average distance is 7.5 pm smaller than the $\mathrm{Cd}(1)=\mathrm{N}(2)$ and $\mathrm{Cd}(2)=\mathrm{N}(1)$ average distance. The C_{2} axis perpendicular to the $\mathrm{Cd}_{2} \mathrm{~N}_{2}$ plane is not erystallographically imposed. Each Cd(it) atom is also coordi. nated to an $\eta^{\prime}-\mathrm{cp}$ * ligand with a mean $\mathrm{Cd}-\mathrm{C}$ bond distance of $222.2(6) \mathrm{pm}$. creating a distorted trigonal plate ($\mathrm{CdN}_{2} \mathrm{C}$) about each $\mathrm{Cd}(\mathrm{I})$ atom. In the other three dimers a pair of chlorine [15] or bromine [15,16] atoms serve as bridges. In two of these, each CddII) atom is in a distorted trigonal planar environment $\mathrm{CdX}_{2} \mathrm{C}(\mathrm{X}=\mathrm{Cl}[15]$ or $\mathrm{Br}[16])$. In the other both Cd(II) atoms are tetrahedrally coordinated $\mathrm{CdBr}_{2} \mathrm{OC}$ [16]. The mean Cd -L(bridge) bond distance in the three-coordinate derivatives increases with the covalent radius of the donor atom in the sequence: 229.4 pm (N . $75 \mathrm{pm})<253.2 \mathrm{pm}(\mathrm{Cl}, 99 \mathrm{pm})<263.6 \mathrm{pm}(\mathrm{Br}, 114$ $\mathrm{pm})$. The $\mathrm{Cd}-\mathrm{Br}($ bridge) bond distance in the four-coordinate derivative is 266.3 pm . about 2.7 pm longer than that of the three-coordinate derivative. The mean $\mathrm{Cd}-\mathrm{C}$ bond distance of the three-coordinate derivatives (220.3 pm) is somewhat longer than that found in two-coordinate derivatives (219.5 pm), and both are longer than that of the four-coordinate derivative (217 pm).

The structure of $\left[\mathrm{Cd}\left(\mu_{3}-\mathrm{OH}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]_{4}[17]\left(\mathrm{C}_{6} \mathrm{H}_{5}=\right.\right.$ pentafluorophenyl) is shown in Fig. 2, where it can be seen that the cluster is of a cubane type with the

Fig. 2. Structure of $\left[\mathrm{Cd}\left(\mu_{3}-\mathrm{OH}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]_{4}[17]$.
cadmium and oxygen atoms occupying the eight corners.

The final structure [18] is an example where a cadmium is bonded to two Me groups ($\mathrm{Cd}-\mathrm{C}=209(2) \mathrm{pm}$) and two oxygen atoms $(\mathrm{Cd}-\mathrm{O}(1)=288(2) \mathrm{pm}$ and $\mathrm{Cd}-$ $O(4)=275(2) \mathrm{pm})$ which are from different $1.4-\mathrm{di}$ oxane (dox) molecules. This gives rise to an unusual one-dimensional polymeric structure, as slown in Fig 3.

4. Heterometallic cadmiura derivatives

The data for the heterometallic structures are given in Table 3. There is one example containing two metal atoms, $\mathrm{Me}_{2} \mathrm{CdZn}\left(\mathrm{Et}_{2} \mathrm{NCSe}_{2}\right)_{2}$ (19], in which each of the diselenocarbamate groups chelates one metal atom and bridess to the other. Each metal atom is four-coordinate with a tetrahedral arrangement distorted towards a trigonal pyramid (chromophore $\mathrm{CdSe}_{3} \mathrm{C}$). The M Se(terminal) bond distance of $257.5(4) \mathrm{pm}$ is about 13.7 pm shorter than the $\mathrm{M}-\mathrm{Se}$ (bridge) distance, with an $\mathrm{M}-\mathrm{Se}-\mathrm{M}$ bridge angle of 87.1°.

Five derivatives [20-23] contain one cadmium with two other metal atoms. In four of these, with a general formula of $\left[\mathrm{LCd}\left(\mathrm{Mn}(\mathrm{CO})_{s}\right)_{2}\right]$, the cadmium atom is

Fis. 3. Structure of $\left[\mathrm{Cd}(\mathrm{Me})_{2}(\mathrm{dox})_{2}\right]_{n}[18]$.
coordinated by a tridentate ligand [20,22] or a bidentate ligand [21] together with two pentacarbonylmanganese groups in a distorted trigonal-bipyramidal or tetrahedral arrangement respectively. The $\mathrm{Cd}-\mathrm{Mn}$ bond distances range from $270.6(2) \mathrm{pm}$ to $280.0(5) \mathrm{pm}$ (mean value 274.5 pm) in the five-coordinate cadmium derivatives [20.22]. In the two four-coordinate derivatives [21] the $\mathrm{Cd}-\mathrm{Mn}$ bond distances are 267.5(4) pm and 268.7(4) pm (mean 268.2 pm). It is noted that the mean $\mathrm{Mn}-$ C(carbonyl) bond distance of 179.2 pm in the former set is about 1.3 pm longer than the value of 177.9 pm of the latter set, despite the otherwise identical chromophore of the manganese atom $\left(\mathrm{MnC}_{5}\right)$.

The structure of $\left\{\mathrm{Cd}\left[\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right\}(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\right.\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{Ppy}\right)\right]_{2}$) [23] ($\mathrm{Ph}=$ phenyl, $\mathrm{py}=$ pyridine) possesses a crystallographically imposed C_{2} axis, as shown in Fig. 4, which passes through the Cd atom and relates the atoms Fe and N to Fe^{*} and N^{*} respectively. The geometry about the Cd atom is that of a flattened tetrahedron, with a $\mathrm{Cd}-\mathrm{Fe}$ distance of $269.7(5) \mathrm{pm}$ and a $\mathrm{Cd}-\mathrm{N}$ distance of $249.3(3) \mathrm{pm}$.
There are eight clusters [23-29] with four metal atoms. A triclinic structure [23] contains a central fourmembered ring of alternating Cd and Br atoms, with two $\mathrm{FeC}_{3} \mathrm{PSi}$ moieties bonded to each cadmium via the iron atom ($\mathrm{Cd}-\mathrm{Fe}=254.0(3) \mathrm{pm}$), which completes a trigonal planar arrangement about the cadmium atoms.

The structure of monoclinic $\left[\mathrm{CdFe}(\mathrm{CO})_{4}\right]_{4}[24]$ consists of a nearly planar, centrosymmetric, eight-membered ring of alternating Cd and $\mathrm{cis}-\mathrm{Fe}(\mathrm{CO})_{4}$ units. The geometry deviates from $D_{\text {ill }}$ square symmetry, one pair of opposite $\mathrm{Fe}-\mathrm{Cd}-\mathrm{Fe}$ angles have the value $170.25(5)^{\circ}$ and the other pair $189.85(5)^{\circ}$. The $\mathrm{Cd}-\mathrm{Fe}$ bond distance is $\mathbf{2 5 6 . 2 (3)}$ pm.

Two derivatives have the general formula $\left[(\mathrm{CO})_{4}\right.$. $\left.\mathrm{Fe}\left(\mathrm{RO}_{3}\right) \mathrm{Sil}_{3}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right) \mathrm{CdCl}\right]_{2}$, where R is Me or ethyl (E) [25]. There is a centre of inversion in the molecule, which implies a planar $\mathrm{Cd}(\mu-\mathrm{Cl})_{2} \mathrm{Cd}$ system

Fig. 4. Structure of $\mathrm{Cd}\left[\left((\mathrm{MeO})_{3} \mathrm{Si}\right)(\mathrm{CO})_{3} \mathrm{Fe}\left(\mu-\mathrm{Ph}_{2} \mathrm{Ppy}\right)\right]_{2}[23]$

Fig. 5. Structure of $[\mathrm{Li}(\mathrm{thf})]_{3} \mathrm{Cd}\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{CKMe}_{3} \mathrm{SiO}^{2}\right) \mathrm{Br}_{3}$ [28].
and two identical $\mathrm{Cd}-\mathrm{Fe}$ units with $\mathrm{Cd}-\mathrm{Fe}$ bond distances of $260(1) \mathrm{pm}(\mathrm{R}=\mathrm{Me})$ and $258.5(4) \mathrm{pm}(\mathrm{R}=\mathrm{Et})$.

Another derivative with an imposed crystallographic C_{2} symmetry [26] consists of two $\mathrm{Fe}-\mathrm{Cd}$ dinuclear units with Cd atoms joined by double, almost symmetrical. chloride bridges $(\mathrm{Cd}-\mathrm{Cl}=254.6(3)$ and $257.0(4) \mathrm{pm})$. The two CdCl_{2} triangles of the $\mathrm{Cd}(\mu-\mathrm{Cl})_{2} \mathrm{Cd}$ system make a dihedral angle of $165.3(1)^{\circ}$. The iron and cadmium centres are linked by a $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ bridge and a $\mathrm{Cd}-\mathrm{Fe}$ bond (262.4(2) pm).

A light yellow complex [27] consists of iodidebridged $\mathrm{Et}_{4} \mathrm{Sb}_{2} \mathrm{Cd}_{2} \mathrm{I}_{4}$ units which have Cdl_{2} bonded moieties bonded to each antimony atom. The $\mathrm{Cd}-\mathrm{Sb}$ and $\mathbf{S b}-\mathrm{Sb}$ distances are $282.2(2)$ and $278.4(2) \mathrm{pm}$ respectively. The structure of a heterotetranuclear derivative [28] is shown in Fig. 5. The neutral cluster has a structure based on a $\mathrm{CJLi}_{3} \mathrm{Br}_{3} \mathrm{O}$ cube. Another tetranuclear structure. $\left[\mathrm{CdCl}_{2}(a s-4 \mathrm{C} 2 \mathrm{~N}) \mathrm{PPCr}(\mathrm{CO})_{4}\right]_{2}$ [29], contains a central $\mathrm{Cd}(\mu-\mathrm{Cl})_{2} \mathrm{Cd}$ unit which is connected from both sides by $\mathrm{CrC}_{4} \mathrm{P}_{2}$ moieties via two N -donor atoms of the as- 4 C 2 N ligand. A trigonal-bipyramidal coordination about each $\mathrm{Cd}(\mathrm{II})$ atom is completed by a terminal chlorine atom ($\mathrm{CdCl}_{3} \mathrm{~N}_{2}$).

A red cluster containing five metal atoms (CdFe_{4}) [25] has a C_{2} axis in the molecule which passes through the Cd atom. The coordination about the $\mathrm{Cd}(\mathrm{II})$ centre has the geometry of a flattened tetrahedron $\left(\mathrm{CdO}_{2} \mathrm{Fe}_{2}\right)$ with a $\mathrm{Cd}-\mathrm{Fe}$ bond distance of $261.2(1) \mathrm{pm}$.

A hexanuclear structure [($2,2^{\prime}$-bpy) $\left.\mathrm{CdFe}(\mathrm{CO})_{4}\right]_{3}[30]$ consists of near-planar six-membered rings of alternating cis- $\mathrm{Fe}(\mathrm{CO})_{4}$ and (bpy) Cd units. The ring is distorted from the ideal $D_{3 \mathrm{~h}}$ to approximate C_{2} symmetry by compression along a C_{2} axis in the plane of the ring. All Cd -Fe distances are equal at $264.0(7) \mathrm{pm}$, and the $\mathrm{Cd}-\mathrm{Fe}-\mathrm{Cd}$ angles vary from $138.81(15)^{\circ}$ to

Table 3
Crystallographic and structural data for heterometallic organocadmium compounds ${ }^{3}$

$\begin{aligned} & \text { Compound b } \\ & \text { (colour) } \end{aligned}$	Crystal class ${ }^{\text {e }}$ space group Z	$\begin{aligned} & a(\mathrm{pm}) \\ & b(\mathrm{pm}) \\ & c(\mathrm{pm}) \end{aligned}$	$\begin{aligned} & \alpha(\mathrm{deg}) \\ & \beta(\mathrm{deg}) \\ & \gamma(\mathrm{deg}) \end{aligned}$	Chromophore	Cd-L (pm)		L-Cd-L. (d		Reference
$\mathrm{Me}_{2} \mathrm{CdZn}^{\mathrm{II}}\left(\mathrm{Et}_{2} \mathrm{NCSe}_{2}\right)_{2}$	$\begin{aligned} & \mathrm{m} \\ & P_{2} / n \\ & 2 \end{aligned}$	$\begin{array}{r} 682.4(3) \\ 1401.3(4) \\ 1103.1(3) \end{array}$	93.70	$\mathrm{MSe}_{3} \mathrm{C}$	$\mu \mathrm{Se}^{\text {d }}$	271.2(4,30)	$\mu \mathrm{Se}, \mu \mathrm{Se}{ }^{\text {a }}$	$92.9(4)$	[19]
					Se	$257.5(4)$	$\mu \mathrm{Se}, \mathrm{Se}$	$80.3(4,5.2)$	
(colourless)					C_{Me}	202.1(10)	$\mu \mathrm{Se}, \mathrm{C}$	123.2(3,8.7)	
							Se, C	134.9(3)	
								$87.1{ }^{\circ}$	
$\left\{(\right.$ diglyme $) \mathrm{Cd}\left(\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{l}_{2}\right\}$	$\begin{aligned} & \mathrm{m} \\ & P 2_{1} / n \\ & 4 \end{aligned}$	$\begin{gathered} 1016.1(10) \\ 2301.0(20) \\ 971.89) \end{gathered}$	91.80(2)	$\mathrm{CdO}_{3} \mathrm{Mn}_{2}$	0	$254.1(7)$	0.0	63.5(3.4)	[20]
						$265.0(7.47)$		$126.6(3)$	
(orange)					Mn		Mn, Mn	$135.9(1)$	
							O, Mn	103.8(2,12.3)	
				MnCs	OC	178.8(11.33)	C.C	$92.9(6.7 .2)$	
		$1442.9(15)$						$167.0(6,7.8)$	
$\left\{(\right.$ bpy $\left.) \mathrm{Cd}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}\right\}$	$\begin{aligned} & m \\ & P 2_{1} / n \\ & 4 \end{aligned}$		94.62(2)	$\mathrm{CdN}_{2} \mathrm{Mn}_{2}$	N	$235.4(9.5)$	\mathbf{N}, \mathbf{N}	$69.2(4)^{\prime}$	[21]
		$1580.5(16)$			Mn	$268.3(3.3)$	Mn, Mn	$127.7(2)$	
(orange)		$1042.3(10)$					N, Mn	$111.3(3,1.5)$	
				MnC5	OC	178.2(16,42)	C.C	$93.4(7.8 .2)$	
\{(phen)CdiMn(CO) $)_{3}$ \}	$\begin{aligned} & m \\ & P 2_{1} / n \\ & 4 \end{aligned}$	$\begin{aligned} & 1457.4(15) \\ & 1625.8(16) \\ & 1045.3(10) \end{aligned}$						$164.4(7,7.2)$	
			96.87(2)	$\mathrm{CdN}_{2} \mathrm{Mn}_{2}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 236.2(14,20) \\ & 268.1(4,6) \end{aligned}$	$\mathrm{N}, \mathrm{~N}$	$69.5(5)^{i}$	[21]
							Mn, Mn	$131.4(2)$	
(orange)								$109.8(4,2.6)$	
				MnCs	OC	177.5(22,46)	C.C	93.5(9,9.3)	
	$\begin{aligned} & m \\ & P 2_{1} / c \end{aligned}$	$\begin{array}{r} 915.8(15) \\ 1889.5(26) \\ 1696.0(17) \end{array}$	$111.38(9)$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 245.8(14,53) \\ & 278.0(5.20) \end{aligned}$		$164.1(9,7.0)$	
$\left(\right.$ (terpy $\left.\mathrm{Cd}\left(\mathrm{Mn}(\mathrm{CO})_{4}\right]_{3}\right)$				$\mathrm{CdN}_{3} \mathrm{MH}_{2}$			N,N	$66.5(5,3)^{\prime}$	[22]
								132.9(5)	
(red)							Mn, Mn	132,4(2)	
							N,Mn	104.1(4.11.4)	
$\begin{aligned} & \left(C d((\mathrm{MCO}), S)(C O)_{1},\right. \\ & \left.\left.\operatorname{Fe}\left(\mu \cdot \mathrm{Ph}_{2}, \mathrm{Ppy}\right)\right)_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{C} \\ & 4 \end{aligned}$	$\begin{aligned} & 2968,4(8) \\ & 1004,3(3) \\ & 3098.8(6) \end{aligned}$	91.87(2)	$\begin{aligned} & \mathrm{MnC}, \\ & \mathrm{CuN}_{2} \mathrm{Fe}_{2} \end{aligned}$	OC	179.5(22.41)	C.C	93.49,13.6)	
					N	249.3(3)	N,N	80.7(1)	[23]
					Fc	$269.70 \times 5)$	Fe, Fe	$143.459(3)$	
							N, Fc	101.8(1,12.7)	
				FeC.PSi	OC	175.8(5.10)	C. ${ }^{\circ}$	104,9(2,7)	
					P	$221.8(1)$		146.90)	
					St	228.641)	C. ${ }^{\text {c }}$	94.9(1,4.3)	
$\left(\left(\mathrm{Ph}_{4} \mathrm{SO}\right) \times \mathrm{Ph}_{2} \mathrm{HP}\right)\left(\mathrm{CO}_{4}\right)$ FeCd $\mu-(\operatorname{HP)})_{2}$							C. 3	84.3(1,1.9)	
		1045,95)	95,51(3)	$\mathrm{CdBr}_{2} \mathrm{Fe}$			P.Si	173.21(5)	
					$\mu \mathrm{Br}$	200,42)	Br, Br	90.9	[23]
	11	1269.641	$46.58(5)$			208.9(2)	Br,fe	$127.58(8)$	
		$1515.5(7)$	72.94(5)		Fe	254.0(3)		139.9	
				$\mathrm{FeC}, \mathrm{PSi}$	OC	1743.4)	C.C	102.4(8.4.3)	
					P	223.7(5)		151(1)	
					Si	236.4(5)	C.P	94,3(6,8.0)	
$\left[\mathrm{CdFe}\left(\mathrm{CO}_{4}\right)\right]_{d} \cdot 2 \mathrm{Me}_{4} \mathrm{CO}$							C.Si	84,4(5,2.5)	
		$\begin{array}{r} 699.2(4) \\ 1056.6(6) \\ 2602.4(11) \end{array}$	97.8063)	CdFe_{3}	Fe		P.Si	$172.5(2)$	
	$\begin{aligned} & \mathrm{m} \\ & \boldsymbol{\mu}_{2,} / \mathrm{n} \\ & 2 \end{aligned}$					256.3(2,4)	Fe.Fe	$170.2(1,0)$	[24]
								189.85(5)	
				FeC_{4}	$0 C$	177.9×10.101	C.C	98.2(4.2.2)	
$\begin{aligned} & {\left[(\mathrm{CO})_{1} \mathrm{Fe}\left((\mathrm{MeO})_{3} \mathrm{Si}\right)\right.} \\ & \left(\mathrm{Ph}_{2} \mathrm{PCH}, \mathrm{COO} \mathrm{Ph}_{\mathrm{CJ}} \mathrm{CJCl}_{2}\right) \\ & \mathrm{PhCl} \\ & \text { (yellow) } \end{aligned}$	$\begin{aligned} & m \\ & c 2 / r \\ & 4 \end{aligned}$	2345.5(3)	$90.80(4)$		0			$154.7(4,2)$	[29]
				$\mathrm{CdO}_{2} \mathrm{Cl}_{2} \mathrm{Fe}$		246.5(5,51)	0.0	157.5(2)	
		1768.0x ${ }^{1}$			$\mu \mathrm{Cl}$	254.3(2.01)	Cl, Cl	90.93(8)	
		$1602.7(4)$			Fe	$260.1(1)$	O.Fi	$76.6,95.1(1)$	
							Cl, Fe	121.4.146.6(1)	
				FeCiPSi	OC	177(1.0)	P.Cd	94.98(6)	
					P	222.7(1)			
$\begin{aligned} & \left((\mathrm{CO})_{1} \mathrm{Fe}\left((\mathrm{ECO})_{3} \mathrm{Si}\right)\right. \\ & \left.\left.\left(\mathrm{PH}_{2} \mathrm{PCH}, \mathrm{CO}\right) \mathrm{Ph}\right) \mathrm{CuCl}\right]_{2} \\ & (\mathrm{yc}(\mathrm{OW}) \end{aligned}$	m C2/c 4	$\begin{aligned} & 2539.2(5) \\ & 1855.4(6) \\ & 1628(1) \end{aligned}$	$120.73(3)$		Si	230,2(2)			
				$\mathrm{CuO}_{2} \mathrm{Cl}_{2} \mathrm{Fe}$	0	258(1,12)	Cl, Cl	87.7(1)	[25]
					$\mu \mathrm{Cl}$	25.4.2(4,35)	O.Fe	74.2, 93.5(2)	
					Fe	258.5(4)	$\mathrm{Cl,Fe}$	122.1,148.8(1)	
				$\mathrm{FeC}_{3} \mathrm{PSi}$	OC	1742,2)	P.Cd	94.0(2)	
					P	222.1(4)			
					Si	230.4(5)			

$148.40(15)^{\circ}$, and the $\mathrm{Fe}-\mathrm{Cd}-\mathrm{Fe}$ angles vary from $94.78(14)^{\circ}$ to $102.04(16)^{\circ}$.

The structure of the heptanuclear $\left[\mathrm{Fe}_{6} \mathrm{Cd}(\mathrm{CO})_{22}\right]^{2-}$ anion [31] reveals two Fe_{3} units coordinated to a central
cadmium atom, which is thus surrounded by four iron atoms in a rather unsymmetrical coordination with a mean Cd-Fe bond distance of $274.3(2) \mathrm{pm}$. The mean $\mathrm{Fe}-\mathrm{Fe}$ bond distance ($266.6(3) \mathrm{pm}$) is about 7.7 pm

Table 3 (continued)

Fig, 6. View of the heterometallic chain of $\left.\left[(\mathrm{GePh})_{3}\right)_{2} \mathrm{CdNif(cp)}\right]_{2} \mathrm{Cd}$ [32].
shorter than the $\mathrm{Cd}-\mathrm{Fe}$ distance. The molecule $\left[\left(\left(\mathrm{GePh}_{3}\right)_{2} \mathrm{CdNi}(\mathrm{cp})\right)_{2} \mathrm{Cd}\right][32]$ is shown in Fig. 6. It contains the longest chain of metal atoms (nine) found in cadmium chemistry. The major bond distances and bond angles for the cluster are also given in the figure.

The structure of a cluster with 13 metal atoms $\left(\mathrm{Cd}_{3} \mathrm{Co}_{10}\right)$ is shown in Fig. 7. in which parts of the metal cluster play the role of ligands [33]. The structure has a triangular Cd_{3} core capped with $\mathrm{Co}(\mathrm{CO})_{3}$ moieties and edge-bridged with three cluster carboxylate ligands.

5. Summary

Almost 40 organocadmium and carbonyl derivatives are gathered in this review. The cadmium oxidation state varies from zero through +1 to +2 . There is only one example of $\mathrm{Cd}(\mathrm{I})$, and this is found in a distotted tetrahedral environment [33]. The oxidation state of +2 is most abundant. Cd(II) is found in digonal, trigonal planar, tetrahedral and five-coordinate (mostly trigonalbipyramidal) environments. The number of metal atoms commonly ranges from one to seven, with one, three and four the most prevalent. There is one example each with nine and 13 metal atoms.

The mean $\mathrm{Cd}=\mathrm{L}$, bond distances vary with degree of coordination. For the three-coordinate derivatives the values follow the order $220.3 \mathrm{pm}(\mathrm{CL})<275.1 \mathrm{pm}$ (D ;

Fig. 7. Structure of $\left[\mu_{3}-\mathrm{Co}(\mathrm{CO})_{3}\right] \mathrm{Cd}_{3}^{\prime}\left[\mu \cdot\left((\mathrm{CO})_{9} \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CCO}_{2}\right)_{3} \cdot\right.\right.$ (thf) ${ }^{\text {[33] }}$.
and $229.4 \mathrm{pm}(\mathrm{NL})<253.2 \mathrm{pm}(\mathrm{Cl})<264.1 \mathrm{pm}(\mathrm{Br})$ for the bridging ligands. For the terrahedral examples the sequence is: $214.6 \mathrm{pm}(\mathrm{CL})<231.0 \mathrm{pm}$ (tridentate $\mathrm{NL})<233.5 \mathrm{pm}(\mathrm{NL})<238.0 \mathrm{pm}(\mathrm{OL})<247.8 \mathrm{pm}$ (bidentate NL) $<257.5 \mathrm{pm}$ (bidentate SeL). The mean $\mathrm{Cd}-\mu_{3} \mathrm{~L}$ bond distances are $224.3 \mathrm{pm}(\mathrm{OH})$ and 271.8 $\mathrm{pm}(\mathrm{Br})$. The later value is somewhat longer than the corresponding $\mathrm{Cd}=\mu \mathrm{Br}$ distance of 266.3 pm .

In the examples with bidentate chelating N -donor ligands the $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ angles of the five-membered metallocyclic rings are smaller when L is an unsaturated compound (2.2'slpy, 1.10-phenanthroline (phen), mean value 67.5°), compared with those of the saturated compounds (ethylenediamine etc., mean value 73.5°). This is probably due to electronic effects involving the ligand L .

In the series of heterometallic carbonyl and organometallic compound of cadmium the mean $\mathrm{Cd}-\mathrm{M}$ bond distance relates to the atomic radius of the heterometal atom M. for example: 246.7 pm ($\mathrm{Ni}, 124$ $\mathrm{pm})<257.3 \mathrm{pm}(\mathrm{Co}, 125 \mathrm{pm})<262.3 \mathrm{pm}(\mathrm{Fe}, 126$ $\mathrm{pm})<269.1 \mathrm{pm}(\mathrm{Mn} .135 \mathrm{pm})$. \AA similar effect is

[^2]noted for the non-transition metal atoms: $\mathbf{2 5 8 . 7} \mathbf{~ p m ~ (G e , ~}$ $137)<282.2 \mathrm{pm}(\mathrm{Sb}, 159)$. There is only one example [33] in which the $\mathrm{Cd}(\mathrm{I})-\mathrm{Cd}(\mathrm{I})$ distance (298.0 pm) is less than 300 pm which is taken as a limit for metalmetal bonding.

This review, together with its precursors for zinc [34-36] and mercury [37-39], represents the first overview of structural data for a non-transition metal subgroup. Despite increasing availability of retrieval systems for scientific data, it is usually time consuming and expensive to gather together related series of compounds for comparison. This review attempts to draw together the structural information presently available for organocadmium compounds, and to present the data in a systematic manner.

Acknowledgements

The authors wish to thank those who gave permission for reproduction of original figures, York University Faculty of Pure and Applied Science and the Ministry of Education of the Slovak Republic for financial support.

References

[1] C.E. Holloway and M. Melnsk, Main Group Met. Chem., 18 (19y5) 451.
[2] C.E. Hollowiy and M. Melnik. Main Ciomur Mtr. Chem. 18 (1995) 42l.
[.] G.A. Ayoko, N.H. Butirus, C. Eaborn. P.B. Hitelucoek and J.D. Smilh. J. Oreanmmet. Chem. 320 (1987) 13%.
[A] S.S. Alduaid, C. Eiborn, A. Habtemariam, P.B. Hitehcock and J.D. Smith. J. Organomet. Chem., 437 (1992) 41.
[5] H. Strasdeit. I. Busehing, A.K. Duhme and S. Pohl, Acta Crystelleger, Sect. C: 49 (1093) 576.
lij H. Schmidbuur, 'T, Costa and B. Milewski-Mahrla, Chem. Ber., 114 (1981) 1428.
[7] A. Looney, A. Salek, Y. Zhang and G. Parkin, Inorg. Chem., 33 (1994) 1158.
[8] W.J.J. Smeels, A.L. Spek, B. Fischer, G.P.M. van Mier and J. Boersma, Acta Crystallogr. Sect. C:, 43 (1987) 893; B. Fischer, G.P.M. van Mier, J. Boersma, W.J.J. Smeets and A.L. Spek, J. Orgunomet. Chem., 322 (1987) C37.
[9] M.J. Henderson, R.I. Papasergio, C.L. Raston, A.H. White and M.F. Lappert, J. Chem. Suc. Chem. Commun., (1986) 672.
[10] P. O'Brien, M.B. Hursthouse, M. Motevalli, J.R. Walsh and A.C. Jones, J. Organomer. Chem., 449 (1993) I.
[11] G.W. Bushnell and S.R. Stobart, Can. J. Chem., 58 (1980) 574.
[12] O.F.Z. Khan, D.M. Frigo, P. O'Brien, A. Howes and M.B. Hursthouse, J. Organmet. Chem., 334 (1987) C27.
[13] M.J. Almond. M.P. Beer. M.G.B. Drew and D.A. Rice, Orgamometallics, 10 (1991) 2072.
[14] C.C. Cummins, R.R. Schrock and W.M. Davis, Or ganmetallics, 70 (1991) 3781.
[15] S.S. Al-Juaid, C. Eabom, A. Habtemariam, P.B. Hitchcock, J.D. Smith, K. Tavakkoli and A.D. Webb. J. Organomet. Chem., 462 (1993) 45.
[16] S.S. Al-Juaid, C. Eabom, A. Habtemariam, P.B. Hitchcock, J.D. Smith, K. Tavakkoli and A.D. Webb, J. Chem. Soc. Chem. Conmun., (1988) 1389.
[17] M. Weidenbruch, M. Hermdorf, A. Schäfer, S. Pohl and W. Saak, J. Organomet. Chem., 361 (1989) 139.
[18] M.J. Almond, M.P. Beer, M.G.B. Drew and D.A. Rice, J. Organomet. Chem., 42 (1991) 129.
[19] M.D. Hursthouse, M.A. Malik, M. Morevalli and P. O’Brien, J. Mater. Chem., 2 (1992) 949.
[20] W. Clegg and P.J. Wheatley, J. Chem. Soc: Daltom Trans., (1974) 424.
[21] W. Clegg and P.J. Wheatley, J. Chem. Ser. Dalton Trans., (1974) 511.
[22] W. Clegg and P.J. Wheatey, J. Chem. Soc: Dalton Trans., (1973) 90.
[23] G. Reinhard, B. Hirle, U. Schubert, M. Knorr, P. Braunstein, A. De Cian and J. Fischer, Inorg. Chem., 32 (1993) 1656.
[24] R.D. Ernst. T.J. Marks and J.A. Ibers, J. Am. Chem. Soc., 99 (1977) 2090
[25] F. Balegroune, P. Braunstein, L. Douce, Y. Dusausoy, D. Grandjean, M. Knort and M. Strampfer, J. Cluster Sci., 3 (1992) 275.
[26] P. Braunstein, L. Douce, M. Knort, M. Sirampfer, M. Lanfranchi and A. Tiripicchio, J. Chem. Soc: Dalton Trans., (1992) 331.
[27] R.S. Dickson, K.D. Heazle, G.N. Pain, G.B. Deacon. B.O. West, G.D. Fallon, R.S. Rowe, P.W. Leech and M. Faith. J. Orgamomet. Chem., 449 (1993) 131.
[28] N.H. Buturuss, C. Eaborn. M.N.A. El-Kheli, P.B. Hitehcock. J.D. Smith, A.C. Sullivan and K. Tavakkoli, J. Chem. Sat Dulum Thans., (1988) 381.
[29] H.J. Haupt, E. Kleinberg and U. Flitke, Z. Anors. Alls. Chem., 619 (1993) 864.
[30] R.D. Ernst, T.J. Marks and J.A. Ibers, J. Am. Chem. Sirc., 99 (1977) 2098
[31] W. Deck. A.K. Powell and H. Vahrenkanip, I. Oigamomet. Cheth. 128 (1992) 353.
[32] S.N. Titova, V.T. Bychkov, G.A. Dommehev, G.A. Razuviev. Y.'T. Struchkov and L.N. Zakharov, J. Orgammet. Chem., 187 (1980) 167.
[33] W. Cen. K.J. Haller and I.S. Fehmer, Organametallice. // (1992) 3499.
[34] M. Melnik, K Gyoryova, J. Skorsepa and C.E. Holloway, J. Coord. Eftem. 35 (1995) 179.
[35] M. Melník, K. Györyová, J. Skorsepa and C.E. Holloway, I. Orsanomet. Chem., 503 (1995) 1.
[36] M. Melnik, K. Gÿ̈ryová, J. Skorsepa and C.E. Holloway, Main Croup) Mer. Chem.. 18 (1995) 155.
[37] C.E. Holloway and M. Melník, Main Group Met. Chem., 17 (1995) 741.
[38] C.E. Holloway and M. Melnik. Main (ironp Met. Chem.. 17 (1995) 799.
[39] C.E. Holloway and M. Melnik, J. Organomet. Chem., 495 (1995) 1.

[^0]: ${ }^{\circ}$ Corresponding author.

[^1]: ${ }^{3}$ Where mone than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is the e.s.d. and the second is the maximum deviation from the mean.

 " M emonoclinici c - cubic; of eo orthorthombic.
 ${ }^{*}$ The chemical identity of the coordinated atom or ligand is specified in these columns.
 "Five-membered metallocyelic ting.

[^2]: - Where more than one chemically equivalent distance or angle is present. the mean value is tabulated. The first number in parentheses is the es.d., and the secend is the maximum deviation from the meen.

 ${ }^{r}{ }^{\prime} \mathrm{t}=$ = tetragonal.
 - The chemical identity of the coordinated atom or ligand is specified in these columns.
 ${ }^{-}$The $\mathrm{Cd}-\mathrm{Lo} \mathrm{M}$ angle.
 ' Five-membered metallocyclic ring.
 ${ }^{2}$ The $\mathrm{Cd}-\mathrm{L}-\mathrm{Cd}$ angle.
 The M-L -M angle.
 ${ }^{-}$Four-membered metallocyclic ring.
 1 The $\mathrm{M}=\mathrm{M}$ distance.
 *The Cd-Cd distance.

